移動設(shè)備例如智能手機和平板電腦正在以迅猛的速度增長。由于移動設(shè)備變得越來越小,速度越來越快,重量越來越輕,價格越來越便宜,同時也越來越多功能,并且更復(fù)雜,因而零部件的制造也向小型化和精密化發(fā)展。對于一些關(guān)鍵的零部件,如半導(dǎo)體芯片、微電子封裝、觸摸顯示屏和印刷電路板(PCBs),它們將繼續(xù)面臨挑戰(zhàn),例如提高良品率和生產(chǎn)率,同時還要降低成本。這推動了激光在移動設(shè)備制造中的廣泛應(yīng)用。由于設(shè)備日益復(fù)雜,因而需要更多和更復(fù)雜的制造工藝,同時對激光光源的研究進展也提出了更高要求。
用波長和脈沖寬度更短以及低的M2(光束質(zhì)量)的激光器能創(chuàng)造一個聚焦更集中的光斑,并能保持最小的熱影響區(qū)(HAZ),從而實現(xiàn)更精密的微加工。高的能量吸收,尤其是在紫外(UV)波長和短脈沖范圍,材料將被迅速汽化,從而減少熱影響區(qū)和炭化。較小的聚焦光斑可以實現(xiàn)精度較高、尺寸較小的加工。高功率、高脈沖重復(fù)頻率(PRF)、脈沖整形和脈沖分裂都可以為提高微加工的生產(chǎn)率做出貢獻。持續(xù)的較高的脈沖穩(wěn)定性能確保過程的可重復(fù)性,幫助實現(xiàn)更高的良品率。
傳統(tǒng)的紫外Q開關(guān)二極管泵浦固體(DPSS)激光器能合理地滿足精密制造的要求,但是它們在實現(xiàn)更高的加工速度和較高的微加工質(zhì)量方面還有所欠缺。提高加工速度的常用方法是在保持其他工藝參數(shù)不變的同時提高激光的脈沖重復(fù)頻率。然而,對于典型的Q開關(guān)DPSS激光器來說,這是不可能實現(xiàn)的。這些激光器的平均功率和脈沖能量會隨著脈沖重復(fù)頻率的增加而迅速下降。此外,在脈沖重復(fù)頻率較高時,激光脈沖寬度和脈沖能量波動往往會大幅增加。
為了克服這些限制,需要研發(fā)新的激光技術(shù),因此Spectra-Physics公司在2013年推出了一款獨特的高功率和短脈沖寬度的高重復(fù)頻率紫外混合光纖激光器,功率為40W(250kHz、355nm波長),之后又在2014年擴展到60W(200-300kHz),并在平均功率和脈沖能量方面都有提高。同時,它的最小脈沖寬度從5ns下降至2ns,最大的脈沖重復(fù)頻率從500kHz增至3.5MHz。這些輸出特性為工程師們提供了新的物理條件來實現(xiàn)更廣闊的激光工藝參數(shù)空間。
本文將高脈沖重復(fù)頻率下,高功率和獨立可調(diào)的紫外激光脈沖寬度以及先進的脈沖調(diào)控技術(shù)結(jié)合起來,并將其應(yīng)用于各種微電子材料的微加工中,包括硅(在芯片制造中的應(yīng)用)、氧化鋁(在微電子封裝制造中的應(yīng)用)、玻璃(觸摸顯示屏制造中的應(yīng)用)和銅(印刷電路板和微電子封裝制造中的應(yīng)用)。
半導(dǎo)體制造中的硅刻劃
用激光刻劃硅片可以替代傳統(tǒng)的精密鋸切割。由于晶片變得越來越薄,同時激光變得更強大,因而和鋸切割相比,激光的優(yōu)勢進一步加強。要想與傳統(tǒng)的鋸切割競爭,實現(xiàn)更高的劃刻速度和更好的切割質(zhì)量是至關(guān)重要的。
我們使用Quasar激光器對厚度小于100μm的拋光單晶硅片進行熱損傷最小的高速刻劃。在圖1中,曲線顯示,隨著劃刻速度的增加,劃刻深度會降低(200 kHz、25ns單脈沖)。在較高的重復(fù)頻率下使用較高的功率,同時TimeShift技術(shù) 可以用軟件設(shè)置范圍廣泛的脈沖能量和脈沖寬度,最終我們可以看到,刻劃速度提高了差不多3倍(25ns單脈沖,50μm的刻劃深度)。
圖1 : 硅刻劃的深度和速度曲線, 可以看到TimeShift技術(shù)帶來的優(yōu)化。
圖2顯示了刻劃產(chǎn)生的碎片和熱影響區(qū),它是在單脈沖和能量相同的情況下使用TimeShift技術(shù)來創(chuàng)造一個脈沖串(value="500" unitname="mm">500mm/s和200 kHz)。使用這種技術(shù)的劃刻可以實現(xiàn)較高的燒蝕質(zhì)量,并且在上表面會產(chǎn)生較少的碎片,不過劃刻的深度要比使用單脈沖的深度高出25%。
圖2:使用單脈沖TimeShift技術(shù)進行刻劃的效果,圖(a)中的刻劃深度為20μm,圖(b)中的刻劃深度為25μm。
氧化鋁陶瓷的刻劃
氧化鋁(Al2O3)陶瓷具有高的介電性能,再加上高強度、耐腐蝕性、高穩(wěn)定性和相對較低的成本,得以廣泛用于微電子封裝。在典型的制造過程中,具有多個模塊的大尺寸氧化鋁基板最終要被分離成單個的模塊(切單)。在常用的刻劃技術(shù)中(“劃片并斷開”),使用激光器在基板上進行深的刻劃,然后通過機械加壓來使基板斷開并分離。高功率紫外激光器可以實現(xiàn)干凈、精確的高速刻劃。
類似于硅刻劃,我們可以看到,當使用Quasar激光器以較高的速度進行氧化鋁刻劃時,可以借助較高的功率和TimeShift技術(shù)來實現(xiàn)最小的熱效應(yīng)。圖3顯示,使用了雙脈沖串的微加工比單脈沖加工具有很明顯的優(yōu)勢。將20ns單脈沖能量分裂為兩個子脈沖,燒蝕深度能增加78%。同樣,圖4顯示了雙脈沖模式下進行同樣深度的刻劃所使用的能量比單脈沖要少40%,同時上表面的碎片也更少。
圖3:氧化鋁的刻劃深度vs能量注量曲線,顯示了TimeShift技術(shù)對生產(chǎn)率的影響。
圖4:對使用TimeShift技術(shù)進行氧化鋁劃刻的質(zhì)量進行比較。
圖(a)是使用了單脈沖模式(170μJ/脈沖)的上表面視圖,圖(b)是使用了雙脈沖模式(170μJ/脈沖)的上表面視圖。這兩種情況中的劃刻深度都是4μm。
平板顯示器中的玻璃切割
在顯示器制造過程中,觸摸屏和LCD的玻璃塊的剝離需要直線切割,而創(chuàng)建角、孔和槽則需要曲線切割。消費類電子產(chǎn)品中使用的玻璃基板通過各種化學(xué)或者熱處理而變得越來越薄,強度也越來越高,因而用激光加工玻璃在實現(xiàn)高質(zhì)量的切割和高的生產(chǎn)率方面顯示出巨大的潛力,同時還能減少傳統(tǒng)的機械劃刻和剝離工藝所帶來的產(chǎn)量損失。
我們開發(fā)的TimeShift技術(shù)是一種利用了激光與物質(zhì)間相互作用的效應(yīng)來進行玻璃加工的技術(shù)。該技術(shù)正在申請專利中。在該技術(shù)中,對單個激光脈沖進行修改,可以減少熱負荷和造成的材料碎塊或碎片。這在化學(xué)強化玻璃的切割中可以實現(xiàn)較好的切割質(zhì)量以及超過value="1.5" unitname="m">1.5m/s的線切割速度,例如康寧大猩猩玻璃(Corning Gorilla)、旭硝子龍尾系列玻璃(Asahi Dragontail)和肖特(Schott)Xensation玻璃。在鈉鈣玻璃和先進的柔性玻璃(例如康寧Willow玻璃)的加工中能得到類似的結(jié)果,而對于藍寶石加工的工藝開發(fā)也正在進行中。圖5顯示了在value=".7" unitname="mm">0.7mm厚的康寧大猩猩玻璃中的加工結(jié)果,該玻璃具有40μm厚的化學(xué)強化層(DOL)。從圖中可以看出,切割的邊緣非常干凈,并且具有很少的碎片,也沒有可見的微細裂紋。
圖5:使用Quasar激光器的TimeShift技術(shù)在value=".7" unitname="mm">0.7mm厚的康寧大猩猩玻璃(具有40μm厚的化學(xué)強化層)上進行直線、曲線和孔的切割。
先進封裝和互連中的銅切割
對聚合物基板上的薄的(10-20μm)銅層進行干凈而快速的切割,這是一個典型的柔性電路分板切割的應(yīng)用。此外,PCB結(jié)構(gòu)中的鉆孔包括了對類似厚度的銅層進行燒蝕。我們研究了TimeShift技術(shù)在這些應(yīng)用中的潛在效用,主要是通過使用子脈沖(脈沖串)來進行銅的刻劃,以提高刻槽的深度。
圖value="6" unitname="a">6a顯示了同樣能量下,相比單脈沖(0納秒的脈沖間隔),用10ns脈沖間隔能創(chuàng)建更深的溝槽。然而,將脈沖間隔增加到25ns時,會導(dǎo)致材料去除率比單脈沖更低。這些影響可以借助TimeShift技術(shù)的靈活性來輕易消除。從而能為研發(fā)工程師考慮激光材料相互作用的機制帶來靈感,因而可以獲得更快速和更全面的工藝優(yōu)化以實現(xiàn)更高的速度和更好的質(zhì)量。
圖6b顯示了在5ns子脈沖持續(xù)時間下,將脈沖總能量分成更多的子脈沖,會帶來更高的材料去除率。類似圖1中的硅和圖3中的氧化鋁,多個子脈沖將會帶來更干凈的切割邊緣和較少的碎片。
圖6:TimeShift技術(shù)給銅劃刻帶來的影響。圖(a)是改變子脈沖的時間間隔帶來的不同材料去除率,
圖(b)是改變子脈沖的數(shù)量帶來的不同材料去除率。每一串子脈沖的總能量固定為20或45μJ。
小結(jié)
在消費類移動電子設(shè)備的制造工藝中,常常使用激光來進行各種材料的微加工。我們發(fā)現(xiàn),將具有較高的脈沖重復(fù)頻率的高功率紫外激光與TimeShift可編程脈沖整形技術(shù)(Quasar激光器)結(jié)合起來,可以大大提升微加工的加工效果。
將紫外激光用于多種常見的微電子材料(包括硅、陶瓷、玻璃、銅)的大批量加工,可以帶來很多益處。通過擴大工藝參數(shù)空間(在較高的脈沖重復(fù)頻率下提高功率),再加上先進的脈沖分裂和整形技術(shù),我們可以在提高加工速度的同時獲得微加工質(zhì)量的提升。通過適當?shù)膮?shù)優(yōu)化,使用這種新的紫外納秒脈沖激光源可以獲得更好的質(zhì)量和更高的生產(chǎn)率,從而提升如今激光微加工的能力,以面對未來對于消費類電子產(chǎn)品制造提出的更高挑戰(zhàn)。
說明
Quasar是Spectra-Physics公司的注冊商標。RAJESH PATEL(raj.patel@spectra-physics.com)是Spectra-Physics公司(總部位于加利福尼亞州圣克拉拉)的戰(zhàn)略營銷與應(yīng)用總監(jiān),JAMES BOVATSEK是該公司的應(yīng)用實驗室經(jīng)理,ASHWINI TAMHANKAR是高級應(yīng)用工程師。
轉(zhuǎn)載請注明出處。